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Abstract— Max & min architectures for stochastic comput-
ing (SC) are introduced. Their key characteristic is the utilization
of an accumulator to store the signed difference between the two
inputs, without randomizing sources. This property results in
fast-converging and highly accurate computations using short
sequence lengths, improving on the latency–accuracy tradeoff
of existing SC max–min architectures. The operation of the pro-
posed architectures is modeled using Markov Chains, resulting in
in-depth analysis, the derivation of their statistical properties, and
guidelines for selecting the register’s size to achieve overall design
optimization. The computational accuracy and the hardware
requirements of the proposed architectures are compared to
those of existing ones in the SC literature, using MATLAB and
Synopsys Tools. The efficacy of the proposed architectures is
demonstrated by realizing a 3 × 3 median filter and using it in
an image processing application.

Index Terms— Stochastic computing (SC), stochastic max, sto-
chastic median filter, stochastic min, unconventional computing.

I. INTRODUCTION

UNCONVENTIONAL computing paradigms have
recently gained attention as computationally efficient

alternatives to binary computing in many emerging
applications implemented in VLSI hardware [1]–[5]. Among
many, Stochastic Computing (SC) is considered an effective
approach [1], [2], [6]–[8].

In SC, information is processed in probabilistic terms
by encoding real numbers as stochastic sequences [9], [10].
Its probabilistic nature, therefore, makes it robust to
soft-errors [2]. In addition, SC realizes fundamental arith-
metic operations and highly complex functions using very
simple and compact logic cells, thereby reducing dramatically
the hardware area requirements compared to the traditional
binary arithmetic [2], [8], [11], [12]. Beyond its strong points,
SC requires several computational cycles to achieve high
computational accuracy, which impacts its power and energy
efficiency [6], [12], [13]. Hence, to make the best of it,
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achieving low latency combined with increased computational
accuracy in SC designs is of primary concern.

On application level, SC’s advantages are favored in the
emerging fields of neural networks (NNs) [4], [6], [14]–[18]
and digital image processing [3], [19], [20]. These fields
require nonlinear blocks as an essential part of their digital
signal processing (DSP) cores (besides the basic arithmetic
operations), implemented by finite state machines (FSMs) [3],
[7], [15], [19]. Stochastic FSMs can realize effectively non-
linear functions, such as the tanh, the exponential, the linear
gain, and the max & min [3], [4], [7], [15], [19].

The max & min are very popular nonlinear functions [1],
especially in max-pooling operations, and thus, their efficient
implementation is significant within SC’s context. Current
max & min architectures include the following ones.

The architecture by Lee et al. [21] realizes the stochastic
max & min by correlating [22] the input sequences using
a three-state FSM and then a single gate to produce the
output, depending on the desired function (max or min). The
FSM’s number of states limits the accuracy of the output
since it can only store logic ones according to the FSM depth
used.

Another architecture, by Li et al. [3], uses MUXs and
the FSM-based tanh function [15] to realize the max &
min. One of the two MUXs, though, uses an additional
hardware-demanding binary-to-stochastic converter to gener-
ate the MUX’s select signal (besides its inputs), thus increasing
the hardware requirements [12]. Furthermore, the dependence
of the FSM’s number of states with the input sequence
length requires numerical simulations beforehand to derive the
register’s size that yields the highest computational accuracy.

Following Li et al. [3], the approach by Yu et al. [23]
replaces the binary-to-stochastic converter with an XOR to
reduce the hardware overhead, keeping the rest of the process-
ing structure.

A recent method to realize the max & min is proposed by
Lunglmayr et al. [7]. Instead of tanh-based FSM as in [23],
it uses a shift register to store the ones from one of its inputs,
and its least significant bit (LSB) produces a logic 1 if it
has saturated up to the LSB. Similar to [23], the size of
shift register that yields the highest computational accuracy is
derived with numerical simulations according to the stochastic
sequence length used. Moreover, if the shift register’s size
is not selected accurately, the output’s accuracy is reduced,
as shown in [7].
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Motivated by the design challenges of the former methods
combined with the necessity for fast computations in SC,
we propose a different approach for max & min. The proposed
architectures utilize an accumulator to capture and store the
signed bit differences between their two input sequences,
without additional random sources, making their operation
deterministic. This results in fast convergence and at the same
time highly accurate computations using short input sequence
lengths.

The above properties are demonstrated by modeling the
architectures using Markov Chains (MCs), allowing us to:
1) explain their operating principles in detail; 2) derive the
first-order statistics of their output and prove their proper
operation at the limit; 3) calculate analytically the probability
of overflow; and 4) provide guidelines to select their register’s
size based on accuracy requirements.

This article is organized as follows. In Section II, we provide
a background on the notation and the statistical properties
of the stochastic numbers. In Section III, we introduce the
proposed stochastic max architecture and analyze it mathemat-
ically using MCs. Based on the proposed max, in Section IV,
we present the proposed min along with its analysis. In
Section V, we present extensive comparisons between the
proposed architectures and existing ones selected from the SC
literature in terms of computational accuracy and hardware
resources. In Section VI, we demonstrate the architectures’
effectiveness by using the proposed max and min to realize a
3 ×3 median filter, perform a standard image processing task,
and compare it with the standard binary approach. Finally,
in Section VII, we conclude this work.

II. STOCHASTIC NUMBER REPRESENTATION

SC requires an interface to encode binary numbers into
stochastic ones, a process typically done using stochastic
number generators (SNGs) [2], [9], [24]. Their operation is
based upon the comparison on each clock cycle of the value
of a pseudorandom number generator of k-bits (for instance,
a linear feedback shift register (LFSR)) with a fixed value
b ∈ [0, 1] encoded as a k-bit binary word. According to
the comparator’s result, the SNG outputs a logic 0 or 1,
and the bit generation is completed after N = 2k clock
cycles, corresponding to the length of the generated stochastic
sequence.

The (random) bits in the N-bit sequence are assumed to
be independent identically distributed (i.i.d.) Bernoulli random
variables, i.e., Xn, n = 1, 2, . . . , N , where n is the time
index. Assuming the unipolar format encoding, the stochastic
number’s value is

X̃ N = 1

N
(X1 + X2 + · · · + X N )

within [0, 1], with expected value X � Pr (Xn = 1). For neg-
ative stochastic number representation, known as the bipolar
format, the transformation X �→ 2X − 1 expands the range of
the stochastic number to [−1, 1].

III. STOCHASTIC MAX ARCHITECTURE AND ANALYSIS

In this section, we introduce the proposed stochastic max
architecture, and we present its mathematical modeling and
analysis using MCs.

Fig. 1. Proposed stochastic max architecture. Tn is the m-bit register’s state,
updated according to (1).

A. Architecture

The proposed stochastic max architecture is shown in Fig. 1,
where {Xn} and {Yn} are the stochastic input sequences and
{Zn} is the output. Ideally, if, for some n, it is Yn > Xn , then
the m-bit register’s value is increased by 1 (up count), whereas,
if Yn < Xn, it is decreased by 1 (down count). If Yn = Xn ,
the register’s value remains unchanged. Also, we assume the
initial value T0 = 0. One could say that the m-bit register’s
purpose is to count the signed bit-differences between its two
inputs.

It is important to note that the up & down counting of the
m-bit register is saturating, meaning that states 0 and M − 1
cannot be exceeded, and it is always Tn ∈ TR where TR �
{0, 1, 2, . . . , M − 1}, with M = 2m being the total number
of states. Hence, from the architecture of Fig. 1, we conclude
that the state Tn evolves according to

Tn = max
{

min
{
Tn−1 + XnYn − XnY n, M−1

}
, 0
}

(1)

where Xn = 1 − Xn and Y n = 1 − Yn .
The architecture’s output Zn is determined as follows: if Xn

and Yn are both 0 or both 1, then Zn is 0 or 1, respectively;
if Yn > Xn , then Zn = 1; if Yn < Xn, then Zn = 1; if the
register was zero in the previous cycle, i.e., if Tn−1 = 0, it is
Zn = 0 otherwise.

Defining Jn to be 1 if Tn > 0 and zero otherwise, and by
inspecting the architecture in Fig. 1, the output Zn can be
expressed as

Zn = Yn + Xn Jn−1. (2)

The deterministic behavior of the proposed architecture
in Fig. 1 is captured by (1) and (2). Specifically, the output Zn

is a function of the inputs and the state Tn without any addi-
tional randomization from any source. As such, the resolution
of {Zn} is only limited by the length of the N-bit stochastic
input sequences and the register’s size.

B. Markov Chain Modeling

To model the operation of the proposed architecture with the
stochastic inputs, we consider two MC models. The first one
is more simple and allows us to easily model the transitions
of the state. However, it is not convenient for modeling the
output, which is a function of the previous state and the
current inputs. To simplify the derivation of output statistics,
we extend the first model by doubling the number of states so
that the output depends only on the current state. Both models
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Fig. 2. MC model of the proposed stochastic max architecture. Output Zn
is determined by the state’s transition according to transition probabilities
A, B, C, and D given by (4).

are helpful in explaining different aspects of the architecture’s
behavior and are discussed in the following.

1) Markov Chain Model: The first MC model is shown
in Fig. 2. It describes the max architecture’s operation and
corresponds to a Mealy FSM. The model’s M states have the
obvious one-to-one correspondence with the register’s states.
The MC model’s state Sn at time index n, starting from S0 = 0,
transitions within the set

S � {0, 1, 2, . . . , M − 2, M − 1}. (3)

If the MC’s current state is Sn−1 at time index n − 1, then
inputs Xn and Yn along with Sn−1 determine the output Zn and
the next state Sn . The transition probabilities A, B, C , and D
are

A = Pr (Xn = 0)Pr (Yn = 0)

B = Pr (Xn = 1)Pr (Yn = 1)

C = Pr (Xn = 0)Pr (Yn = 1)

D = Pr (Xn = 1)Pr (Yn = 0). (4)

To proceed with the analysis of the MC’s behavior, we define
the M × M transition probability matrix

H =
[

Pr (Sn+1 = s|Sn = σ)
]

σ,s∈S
where Pr (Sn+1 = s|Sn = σ) is the transition probability from
state σ to state s, at time index n, and σ, s = 0, 1, . . . , M −1.
From (4), it is

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − C C 0 . . . . . . 0
D A + B C 0 . . . 0
0 D A + B C . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 D A + B C
0 . . . . . . 0 D 1 − D

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(5)

The probability distribution vector of state Sn is defined as

pT
n �

⎡⎢⎢⎢⎢⎢⎣
Pr (Sn = 0)
Pr (Sn = 1)
Pr (Sn = 2)

...
Pr (Sn = M − 1)

⎤⎥⎥⎥⎥⎥⎦ ∈ [0, 1]M . (6)

For n = 1, 2, . . . , N steps, it is expressed as

pn = p0 H n ∈ [0, 1]M (7)

where p0 is the initial distribution vector representing the
starting state of the register, i.e., S0 = 0, i.e.,

p0 = [
1, 0, 0, . . . , 0

] ∈ [0, 1]M . (8)

The analysis of the MC model of Fig. 2 is used to derive
guidelines for the register’s size, presented in Section III-E.

2) Extended Markov Chain Model: Despite its simplicity,
the MC model of Fig. 2 is not convenient for the analysis of
the statistics of the output. Instead, we can double the number
of its states to get the MC model of Fig. 3. This extended MC
model corresponds to a Moore FSM, relating the output value
Zn only to the state.

Each register state is represented by two states in the
model of Fig. 3. The states of the model are classified into
two subsets; the first one, Sa � {0a, 1a, . . . , (M − 1)a}
containing the states that output Zn = 0, and the second
one, Sb � {0b, 1b, . . . , (M − 1)b} containing the states that
output Zn = 1. The MC’s state S̃n transitions within the 2M
states in

S̃ � Sa ∪ Sb = {0a, 0b, 1a, 1b, . . . , (M − 1)a, (M − 1)b} (9)

according to inputs Xn, Yn and with initial state S̃0 = 0a.
The transition probability matrix H̃ ∈ [0, 1]2M×2M of the

model in Fig. 3 is expressed using A, B, C, and D from (4),
the definitions F � B + D and U � B + C , and the state
ordering

(
0a, 0b, 1a, 1b, . . . , (M − 1)a, (M − 1)b

)
as follows:

H̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A F 0 C 0 . . . 0
A F 0 C 0 . . . 0
D 0 A B 0 C 0 . . . 0
D 0 A B 0 C 0 . . . 0
0 0 D 0 A B 0 C 0 . . . 0
0 0 D 0 A B 0 C 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 D 0 A B 0 C
0 . . . 0 D 0 A B 0 C
0 . . . 0 D 0 A U
0 . . . 0 D 0 A U

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

The probability distribution vector of state S̃n is defined as

p̃T
n �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pr (S̃n = 0a)
Pr (S̃n = 0b)
Pr (S̃n = 1a)
Pr (S̃n = 1b)

...

Pr (S̃n = (M − 1)a)
Pr (S̃n = (M − 1)b)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ [0, 1]2M (11)

and it is expressed as

p̃n = p̃0 H̃ n ∈ [0, 1]2M (12)

where the initial state of the register S̃0 = 0a is given by

p̃0 = [
1, 0, 0, . . . , 0

] ∈ [0, 1]2M . (13)
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Fig. 3. Extended MC model of the proposed stochastic max architecture with transition probabilities given by (4). Each register state is represented by two
states in the model and is classified into two subsets of states: upper ones outputting Zn = 1 and lower ones outputting Zn = 0. Subscripts a and b denote
in which subset S̃n is currently into. Transition probabilities A, B, C, and D are given by (4).

C. First-Order Statistics and Proof of Operation

To derive the first order statistics of the max architecture,
we use the MC model of Fig. 3 along with (10), (12), and
(13). Based on the model, we use the fact that Zn = 1 if and
only if S̃n ∈ Sb. Therefore, the expected value of the output
Zn is

E[Zn] = Pr (Zn = 1) = Pr
(
S̃n ∈ Sb

) = p̃0 H̃ nqT
e (14)

with qe (ones in the even-indexed positions) defined as

qe � [0, 1, 0, 1, . . . , 0, 1] ∈ [0, 1]2M . (15)

The average of the N-bit output sequence is

Z̃ N = 1

N

(
Z1 + Z2 + · · · + Z N

)
(16)

and using (14), its expected value is written as

E[Z̃ N ] = 1

N

N∑
n=1

E[Zn] = 1

N
p̃0

(
N∑

n=1

H̃ n

)
qT

e . (17)

Using the expected value of the architecture’s mean E[Z̃ N ],
it can be verified that Z̃ N converges to max{X, Y }. Specifically,
in the Appendix, it is shown that, for X, Y ∈ (0, 1) and X �= Y ,
it is

lim
M→∞

(
lim

N→∞ E[Z̃ N ]
)

=
{

X, X > Y

Y, X < Y.
(18)

D. Error Profile

We measure the accuracy of the proposed max’s output and
show the distribution of error for different inputs X, Y ∈ [0, 1]
using the mean absolute error (MAE) as

Zerror = E

∣∣∣Z̃ N − max{X, Y }
∣∣∣ (19)

where Z̃ N is given by (16) and X, Y ∈ [0, 1]. The MAE
is calculated numerically for pairs of i.i.d. input sequences
(X, Y ), while the simulation is performed 103 times for each
pair considered. In Fig. 4, the MAE results are shown with

Fig. 4. MAE calculated using (19) parameterized with sequence length
N = 64 and register size m = 2-bits. Simulations are performed for 103 runs
on each pair (X, Y ).

sequence length N = 64 and a m = 2-bit register. One can
observe that the error peaks when X = Y = 0.5 and gradually
decreases when moving away from this pair values.

E. Register’s Size and Overflow Markov Chain Model

According to the architecture of Fig. 1, the m-bit register
counts the time indices for which Xn < Yn . A potential case
for the inputs is when {Yn} happens to have large segments
of all ones, while, simultaneously, {Xn} has large segments
of all zeros. This means that, at each time index, the counter
will increase its value by 1-bit, whereas, in the MC model of
Fig. 2, the current state Sn will transition up to state M − 1.

The size of the m-bit register and, consequently, the M
states in the MC model are both finite; further storing of 1s
beyond their respective sizes is not feasible and results in
overflow. To this end, it is important to investigate how the
number of states M is related to overflows, as well as when
overflows lead to erroneous bits in the output.

1) Overflow Calculation: To model the overflow occur-
rence, we modify the existing model of Fig. 2 into the one
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Fig. 5. Overflow MC model of the proposed stochastic max architecture.
Absorbing state M represents the overflow. Transition probabilities A, B, C,
and D are given by (4).

shown in Fig. 5, and note that it is preferred over the MC
model of Fig. 3. This is because we focus on the MC’s
transitions within its states, and the simplicity of the MC
model of Fig. 2 makes it suitable for this purpose.

The two models, in Figs. 2 and 5, are identical, except that
the second one has one more state, M , which is absorbing. The
purpose of this state is to capture the existence of a register’s
overflow. This occurs at a time index n when the state of the
model in Fig. 2 is Sn = M −1, and the inputs are Xn = 0 and
Yn = 1, corresponding to probability C . In this case, the state
of the model in Fig. 2 remains in M − 1, whereas the one
on the model in Fig. 5 is captured in M . It is important to
note here that the extra state does not imply an increase in the
register’s size, and it is used for modeling purposes only.

To calculate the probability of overflow, we define first the
set of states Ŝ � {0, 1, 2, . . . , M}, which has M + 1 values.
The transition probability matrix Ĥ ∈ [0, 1](M+1)×(M+1) with
state ordering (0, 1, . . . , M) is

Ĥ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − C C 0 . . . . . . 0
D A + B C 0 . . . 0
0 D A + B C . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 D A + B C
0 . . . . . . 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(20)

The probability vector of the state Ŝn is

p̂T
n �

⎡⎢⎢⎢⎣
Pr (Ŝn = 0)

Pr (Ŝn = 1)
...

Pr (Ŝn = M)

⎤⎥⎥⎥⎦ ∈ [0, 1]M+1 (21)

and is expressed as

p̂n = p̂0 Ĥ n ∈ [0, 1]M+1 (22)

where the initial probability vector is

p̂0 = [
1, 0, 0, . . . , 0

] ∈ [0, 1]M+1. (23)

From (21), the probability that the register has overflowed at
least once until time index n ≤ N is

P̂overflow(n) � Pr (Ŝn = M) = p̂0 Ĥ neT
M+1 (24)

where eM+1 = [
0, . . . , 0, 1

] ∈ R
M+1.

In addition to (24), we use the model in Fig. 5 to calculate
the expected number of transitions1 before the first overflow

1i.e. the expected value of the time index n∗ when the first overflow takes
place.

Fig. 6. Expected number of steps to absorption, calculated using (27),
with stochastic sequence length N = 32 and number of states M = 4,
parameterized on the inputs’ expected values X and Y .

or, equivalently, the reach of the absorption state M . We start
by writing matrix Ĥ in its canonical form [25], [26] as

Ĥ =
[

H̄ R
0 1

]
(25)

where H̄ ∈ [0, 1]M×M and R ∈ [0, 1]M×1. Then, the funda-
mental matrix F ∈ [0, 1]M×M of the absorbing MC is

F = (I − H̄)−1 (26)

where I ∈ [0, 1]M×M is the identity matrix. Since the initial
state of the MC model in Fig. 5 is Ŝ0 = 0, the average
number of transition steps to reach the absorbing state is given
by [25], [26]

N∗ = p0 F1 (27)

where p0 is defined in (8) and 1 ∈ [0, 1]M×1 is the column
vector of ones.

Fig. 6 presents the expected number of steps before absorp-
tion calculated using (27). The stochastic sequence length is
N = 32, the number of states is M = 4, and the input expected
values X, Y ∈ [0, 1] are sweeped parametrically. As expected,
N∗ increases with X and decreases with Y , which is intuitively
in agreement with the MC model in (24) and the transition
probabilities in (4).

2) Errors Due to Overflow: Although the finite number
of states may result in an overflow, an overflow does not
necessarily imply an erroneous bit in the output Zn . Consider,
for example, the case when after the first overflow, the state
Sn remains within S − {0}, as shown in Fig. 2.

Now, consider the following extreme scenario. The state
starts from S0 = 0, Xn = 0, and Yn = 1 for n = 1, 2, . . . , M−
1 implying Sn = n and n = 0, 1, 2, . . . , M − 1. Then, again
X M = 0 and YM = 1 implying SM = M − 1 and an overflow.
After that, assume the sequences Xn = 1 and Yn = 0, n = M+
1, M +2, . . . , 2M −1 implying Sn = 2M −n −1 for the same
n values. So far, the output is always Zn = 1 independently of
the overflow. Observe that S2M−1 = 0, and if the overflow had
not occurred, e.g., if the states were M + 1 instead of M − 1,
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TABLE I

MINIMUM REGISTER SIZE m-BIT (M = 2m ) SATISFYING N∗ ≥ N

Fig. 7. Proposed stochastic min architecture. Tn is the m-bit register’s state,
updated according to (1).

then it would be S2M−1 = 1. Finally, assume that X2M = 1
and Y2M = 0, which implies that Z2M = 1, whereas, if the
overflow had not occurred, it would have been Z2M = 0. One
can easily prove that the above describes the shortest sequence
(input and state) resulting in an erroneous output bit.

Therefore, the maximum sequence length N for which the
probability of error is always zero, independently of the input
values, is Nerrfree = 2M − 1.

Although Nerrfree is always desirable, in cases when N is
required to be large, it will also force the register’s states M
to be large as well and, therefore, will increase the hardware
resources. Instead, one can relax the error-free requirement
allowing for overflows that may result in a few incorrect output
bits. In this direction, we can use the expression of N∗ in
(27) to select M (note that M defines the size of the matrices
involved).

Fig. 4 shows that the highest MAE appears when X = Y =
0.5. This relates to the appearance of overflows converted into
erroneous output bits. Assuming that X = Y = 0.5, we first
select the value of N , and then, we choose M = 2m to be the
smallest power of 2 resulting in N∗ ≥ N . The values of the
derived register’s sizes m are cited in Table I parameterized
on N .

IV. STOCHASTIC MIN ARCHITECTURE AND ANALYSIS

In this section, we follow the stochastic MAX’s principles
to introduce the proposed stochastic MIN architecture and its
mathematical analysis using MCs.

A. Architecture
The proposed min architecture is shown in Fig. 7. Again,

the m-bit register is used to count the number of cases
Yn > Xn minus the number of cases Yn < Xn . Therefore,
the accumulator’s current value Tn starts from T0 = 0 and
belongs in the set TR � {0, 1, 2, . . . , M −1}, which has a total
of M = 2m states and is updated according to (1). Similar to
the max architecture, states 0 and M − 1 constrain the values’
range of Tn.

Fig. 8. MC model of the proposed stochastic min architecture. Output Kn
is determined by the state’s transition according to transition probabilities
A, B, C, and D given by (4).

In contrast to the max architecture, the output Kn here is
determined as follows: if Xn and Yn are both 0 or 1, then Kn

has the same value 0 or 1, respectively; if Yn > Xn , then Kn

always outputs 0; and if Yn < Xn , then Kn = 1 if and only
if the register’s previous value was Tn−1 > 0, and Kn = 0
otherwise. Summarizing the former cases and also considering
the architecture in Fig. 7 and the definition Jn = Tn > 0,
the instantaneous output Kn is expressed as

Kn = Xn
(
Yn + Jn−1

)
. (28)

B. Markov Chain Modeling
The operation of the proposed min architecture is modeled

using the MC model in Fig. 8. The MC’s current state Sn

transitions within its M states in the set S given by (3), while
its probability distribution vector after N steps is calculated
using (4), (5), (7), and (8).

1) Extended Markov Chain Model: The MC model in Fig. 8
is converted to that in Fig. 9, which allows to relate its current
state S̃n to the output Kn by classifying the model’s states into
the subsets Sa and Sb that always output Kn = 1 and Kn = 0,
respectively. Furthermore, S̃n transitions within 2M states in
the set given by (3), with initial value S̃0 = 0a . Assuming the
states’ ordering

(
0a, 0b, . . . , (M−1)a, (M−1)b

)
, the transition

probability matrix of the MC model is given by the following
equation where we have defined U � B +C and W � D + A:

H̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B W 0 C 0 . . . 0
B W 0 C 0 . . . 0
D 0 A B 0 C 0 . . . 0
D 0 A B 0 C 0 . . . 0
0 0 D 0 A B 0 C 0 . . . 0
0 0 D 0 A B 0 C 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 D 0 A B 0 C
0 . . . 0 D 0 A B 0 C
0 . . . 0 D 0 A U
0 . . . 0 D 0 A U

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(29)

C. First-Order Statistics, Proof of Operation,
and Error Profile

The expected value of the instantaneous output Kn is

E[Kn] = Pr (Kn = 1) = Pr
(
S̃n ∈ Sa

) = p̃0 H̃ nqT
o (30)
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Fig. 9. Extended MC model of the proposed stochastic min with transition
probabilities given by (4). Each register state is represented by two states:
upper one outputs Kn = 0 and lower one outputs Kn = 1. Subscripts a and
b denote in which set S̃n is currently into.

where we used (13) and (29), and qo is defined as

qo � [1, 0, 1, 0, . . . , 1, 0] ∈ [0, 1]2M . (31)

The average of the output N-bit sequence is

K̃N = 1

N

(
K1 + K2 + · · · + KN

)
(32)

and its expected value, using (30), is given by

E[K̃N ] = 1

N

N∑
n=1

E[Kn] = 1

N
p̃0

(
N∑

n=1

H̃ n

)
qT

o . (33)

Finally, the proof of operation of the min architecture is
similar to that of the max one given in the Appendix. Also,
it can be verified that the min’s MAE distribution follows the
same behavior as the max’s one in Fig. 4.

D. Register’s Size and Overflow Markov Chain Model

The up- & down counting in the m-bit register follows the
same principles as in the max case. Similarly, one can add
an absorbing state in the MC model of Fig. 8 and follow
the procedure described in Subsection III-E to calculate the
probability of overflow and to derive the register’s size based
on accuracy requirements. The results are in agreement with
Table I.

V. COMPARISON OF THE PROPOSED ARCHITECTURES TO

STOCHASTIC COMPUTING LITERATURE

In this section, we compare the proposed max and min
architectures with existing ones focusing on SC-based imple-
mentations widely used in the SC literature [3], [7], [21],
[23]. To compare the accuracy of the proposed and the rest
architectures, we use the MAE as the performance metric.
We assume that inputs X, Y are i.i.d. and perform 103 random
runs on each point (X, Y ) that we examine. Then, we calculate
the average value over all points for stochastic sequence
lengths N = 2k with k = 4, 5, . . . , 10. We note that, except for
the proposed architectures where the register size is derived
analytically according to Section III-E, for the rest, we have
selected the register size that yields the highest accuracy
possible based on simulations according to N . The results are
demonstrated in Fig. 10 and are cited in Table II.

Fig. 10. Accuracy comparison in MAE of stochastic max architectures for
typical sequence lengths N . For each N , the architectures’ number of states
is selected to result in the highest computational accuracy.

TABLE II

COMPARISON OF ACCURACY IN MAE

For the hardware requirements of each architecture,
we first synthesized all designs using Verilog HDL
in Xilinx’s Vivado Design Suite targeting the Kintex-7
KC705 Field-Programmable Gate Array (FPGA) kit, so as to
verify their proper operation. Then, we used the Synopsys
Design Compiler with the FreePDK CMOS Library at 45 nm
[27] to extract the area, critical path, power, and energy con-
sumption metrics. For each comparison, we provide estimates
of: 1) the total area in squared micrometer; 2) the average
power consumption in mW for the max operating frequency;
3) the critical path in ns; and 4) the energy (average power
× critical path) per operation in pJ. The detailed results
per operation are cited in Table III, while Fig. 11 presents
comparisons for the energy and the power × delay2 product
for N clock cycles.

At this point, we note that the max architectures
in [3], [7], [21], and [23], including the proposed one, are
able to output the min as well without affecting the total
hardware resources, i.e., introducing additional logic units
or registers. Therefore, the presented accuracy and hardware
resource metrics for the max architectures apply to the min
architectures as well.

It is worth mentioning for the proposed architectures that
their critical path is the minimum time required for the state
Tn to be updated, which is described by (1). In our case,
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Fig. 11. Comparison of Power × Delay2 (pJ × ns) (top) and Energy
pJ (bottom) consumption. For each N , the architectures’ number of states
is selected to result in the highest computational accuracy.

TABLE III

COMPARISON OF HARDWARE RESOURCES IN AREA (μm2), CRITICAL

PATH (ns), POWER (mW), AND ENERGY (pJ)
CONSUMPTION PER OPERATION

this value dominates the FFs’ propagation delay for register
sizes up to m = 5 bits, as shown in Table III, justifying the
constant value as well.

1) Comparison With Lee et al. Method in [21]: The core
of the architecture is a three-state FSM that forces the overlap

of logic ones between its two input i.i.d. sequences {Xn} and
{Yn}, to produce two correlated outputs. These are used as
inputs to an OR gate to produce the final output. If the OR

gate is replaced by an AND in the architecture, then the min
can be realized.

According to Fig. 10, the proposed architecture has better
accuracy regardless of the sequence length N used, and this is
intensified especially for smaller values of N . Hardware-wise,
the proposed architecture occupies less area and consumes
less power and energy for register sizes m = 1, 2, similar
for m = 3, while, for m = 4, 5 Lee et al.’s method
[21] is slightly better. However, the fact that Lee et al.’s
approach in [21] requires more clock cycles to achieve the
same accuracy as the proposed architecture should not be
neglected; the increased latency implies a further increase in
dissipated energy, exceeding the proposed one’s.

2) Comparison With Li et al.’s Method in [3]: The inputs
of this architecture are fed to an MUX that uses an SNG as its
select signal. The MUX’s stochastic output is the input of the
stochastic tanh function, implemented as an FSM of 2m states
(m-bits), while the FSM’s output is determined by the current
state; starting from the zero states, the first 2m/2 − 1 outputs
0, while the rest outputs 1. The FSM’s output is also used as
a select signal in an MUX that determines whether Xn or Yn

to be the architecture’s current output.
From Fig. 10, the proposed architecture results in bet-

ter computational performance in terms of accuracy. The
increased performance of the proposed architecture also
applies to the hardware utilization, as shown in Table III,
which is due to the additional SNG used, contributing neg-
atively to the total area, power, and energy consumption.
Moreover, an important design aspect is the register’s size.
As stated in [3], increasing its size and, hence, the num-
ber of its states, the computational accuracy increases as
well. Yet, the selection of its size that yields the highest
accuracy is estimated with numerical simulations. On the
other hand, the guidelines to select the register’s size in the
proposed architecture eliminate the parametric simulation time
completely.

3) Comparison With Yu et al.’s Method in [23]: To avoid
the power and area hungry SNG from Li et al.’s method in
[3], the architecture by Yu et al. [23] uses an XOR between the
two inputs instead, which acts as an enable signal to up-count
logic 1s coming from its input Xn . The counting is based on
the stochastic tanh FSM, implemented in the same way shown
by Li et al. in [3]. Consequently, the tanh’s output is used as
a select signal in an MUX that determines if Xn or Yn is the
output.

Accuracy-wise, the proposed architecture results in better
computational results, as shown in Fig. 10. In terms of hard-
ware resources, the proposed architecture occupies a larger
area but has reduced power and energy consumption when
the same register size is used according to Table III. From
a designer’s perspective, the register size that maximizes the
accuracy of Yu et al.’s architecture in [23] is derived with
simulations. If not chosen carefully based on the sequence
length N , it directly affects the output’s accuracy; by reducing
the number of its states, it will increase the output’s error.
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Fig. 12. Median filtering with a 3 × 3 kernel for various sequence lengths N . From upper left to lower right: (a) MATLAB’s original image, (b) MATLAB’s
noisy image with salt & pepper noise density 0.02, (c) MATLAB’s filtered image, (d) N = 16, (e) N = 32, (f) N = 64, (g) N = 128, (h) N = 256,
(i) N = 512, and (j) N = 1024. Register size used is m = 2 corresponding to M = 4 states.

On the contrary, the analytic derivation of the proposed max’s
register size provides insight on its design.

4) Comparison With Lunglmayr et al.’s Method in [7]:
In this architecture, motivated by Yu et al.’s method in [23],
an XOR between the inputs is used as an enable signal in
a linear FSM, implemented as a shift register of m-bits (can
also be implemented as a binary counter). The FSM performs a
right shift of the most significant bit (MSB) if Xn = 1, whereas
a left shift is if Xn = 0. The FSM’s output is determined by
the LSB of the register and produces 1 if it has saturated up
to the LSB. Finally, an MUX selects either the FSM’s output
or Yn along with additional logic gates.

From the comparison with the proposed architecture shown
in Fig. 10, the approach by Lunglmayr et al. [7] results in
lower computational accuracy. However, the power and energy
consumption per clock cycle is its strong point, which is due
to the advantage of the shift register over the binary one,
as shown in Table III. Yet, the architecture’s output accuracy
depends on the saturation of the shift register up to its LSB.
If its size is not chosen accurately, for instance, if it is less
or more than a specific value, the output’s accuracy can be
greatly reduced, and this is also shown in [7]. We note that
the register size that results in the highest accuracy possible
is used in the simulations and is also cited in Table II, taken
from [7].

VI. IMAGE PROCESSING APPLICATION: MEDIAN FILTER

In this section, we demonstrate the effectiveness of the
proposed max and min architectures in a standard digital image
processing application. We use them as building blocks to
implement a 3 × 3 median filter, which is typically used to
reduce noise from images [28]. The kernel’s structure is based
on the sorting network presented in [3].

We first select a gray-scale image with 8-bit representation
for each pixel and inject salt & pepper noise with a noise
density of 0.02. Afterwards, we normalize the pixel values to
range [0, 1] so as to be processed in the SC domain. Given
the fact that the accuracy of the architecture is based on the

TABLE IV

ACCURACY IN PSNR OF THE REALIZED 3 × 3 MEDIAN FILTER USING THE
PROPOSED MAX AND MIN ARCHITECTURES

stochastic sequence length N = 2k , we use typical values of
k = 4, 5, . . . , 10 and investigate their effect in computational
accuracy with simulations using MATLAB.

A graphical illustration of the computations using the pro-
posed architectures to implement the median filter is shown
in Fig. 12, while their respective accuracy results evaluated
with the peak signal-to-noise ratio (PSNR) in dB are cited
in Table IV. From sequence lengths N = 64 and forth, the pro-
posed approach provides with a sufficient approximation of
the median filter’s computation, supported by the PSNR of
25.55 dB as well.

To proceed with the hardware resources, we note that the
selected register size for each max and min that we utilize is
m = 2 as it does not degrade the computational accuracy and
holds for all the lengths N used in this specific application.
In Table V, the comparison between the traditional binary
method using 8 bits is shown. Both designs are synthesized
first using Verilog HDL in Xilinx’s Vivado Design Suite
using the Kintex-7 KC705 platform to verify their operation
and then their hardware requirements are extracted using the
Synopsys Design Compiler with the FreePDK CMOS library
at 45 nm [27]. It is important to note that, since the SNG’s
LFSR size determines N , it also affects the overall hardware
utilization. Moreover, given the fact that N is a parameter
selected according to the accuracy requirements, the SNG’s
hardware resources are, therefore, not included in Table V.
Yet, their design can be optimized according to [13].

According to the results, the proposed approach occupies
almost half the binary method’s area, which is its strong point.
Depending on the required accuracy from the sequence length
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TABLE V

HARDWARE RESOURCES FOR THE IMPLEMENTATION OF A 3 × 3 MEDIAN
FILTER USING THE PROPOSED MAX AND MIN ARCHITECTURES

IN AREA (μm2), CRITICAL PATH (ns), POWER (mW), AND

ENERGY (pJ) PER OPERATION

N , the hardware efficiency follows accordingly. For instance,
for N = 64, which provides acceptable results, the total energy
consumption has moderate values compared to the binary ones
corresponding to 68.35 pJ.

VII. CONCLUSION

This work presented a max & min architecture for SC. Ana-
lytic modeling with MCs allowed describing their stochastic
operation in detail and deriving guidelines to achieve overall
design optimization. Compared with state-of-the-art archi-
tectures selected from the SC literature, it was shown that
the proposed ones improve the latency–accuracy tradeoff by
combining fast-converging and highly accurate computations.
Finally, the realization of a 3 × 3 median filter using the
proposed stochastic max and min architectures and its suc-
cessful application in an image denoising task demonstrated
its effectiveness.

APPENDIX

To prove (18), we assume that 0 < X, Y < 1 and X �= Y ,
which implies that 0<A, B, C, D<1 and ρ �= 1, where

ρ � C

D
= (1 − X)Y

(1 − Y )X
. (34)

By inspecting the MC model of Fig. 3, one can observe that the
chain is irreducible since every state is accessible from every
other one, and so the transition matrix H̃ is also irreducible.

Let vT = [v1, v2, . . . , v2M ]T ∈ R
2M be the left eigenvector

of H̃ , i.e., vT H̃ = vT , corresponding to eigenvalue 1, and be
normalized such that vT 1 = 1, where 1 = [1, 1, . . . , 1]T ∈
R

2M is a column vector of ones. Then, it can be verified that

v1 = Aw1 + Dw2

v2 = Fw1

v2k−1 = Awk + Dwk+1

v2k = Cwk−1 + Bwk

v2M−1 = AwM

v2M = CwM−1 + UwM (35)

where k = 2, 3, . . . , M − 1 and wk is given by

wk = λρk−1, k = 1, 2, . . . , M (36)

with

λ � ρ − 1

ρM − 1
. (37)

Since the transition matrix H is irreducible, from [29, Th.
8.6.1], it is limN→∞(1/N)

∑N
n=1 H̃ n = 1vT . Combining it

with (17), we get

lim
N→∞

E[Z̃ N ] = p̃01vT qT
e = vT qT

e =
M∑

k=1

v2k . (38)

From (35) and (36), we have

v2 = Fλ

v2k = λ(C + Bρ)ρk−2

v2M = λ(C + Uρ)ρM−2 (39)

resulting in
M∑

k=1

v2k = λ

{
F + (C + Bρ)

ρM−2 − 1

ρ − 1
+ (C + Uρ)ρM−2

}
.

(40)

Combining the above and taking the limit when N, M → ∞,
we get

lim
M→∞

(
lim

N→∞
E[Z̃ N ]

)
= lim

M→∞

(
M∑

k=1

v2k

)
=
{

X, X > Y

Y, Y > X.

(41)
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